Lineare Algebra - Übungsnotizen 7

Leopold Karl

6. November, 2023

1 WH: Stoff der letzten Woche

Definition (Kern). Sei $T: V \to W$ eine lineare Abbildung. Der Kern von T ist definiert als

$$\ker(T) \coloneqq \{v \in V \mid T(v) = 0\}.$$

Definition (Bild). Sei $T: V \to W$ eine lineare Abbildung. Das Bild von T ist definiert als

$$\operatorname{im}(T) := \{ w \in W \mid \exists v \in V : T(v) = w \}.$$

- Basiswechselmatrizen

2 Organisatorisches

- Bitte Umfrage ausfüllen! Wie abgemacht gibt es eine kleine Belohnung, falls ich zahlreiche und ausführliche Rückmeldungen erhalte.
- Erinnerung: Serie wie folgt abspeichern: #(Seriennummer)_NachnameVorname, z.B.: 4_KarlLeopold.
- Erinnerung: Namen im oberen rechten Eck der ersten Seite der Serie notieren!

3 Lösung Quiz 7

Frage 1. Sei $T: V \to W$ eine lineare Abbildung zwischen den Vektorräumen V und W mit $\ker(R) = \{0_V\}$. Zeige, dass T injektiv ist.

Lösung 1. Seien $v_1, v_2 \in V$ mit $T(v_1) = T(v_2)$. Mit der Linearität von T folgt, dass $T(v_1 - v_2) = 0_W$ und somit wegen $\ker(T) = \{0_V\}$, dass $v_1 - v_2 = 0_V$, i.e. $v_1 = v_2$.

Frage 2. Sei $T:V\to W$ ein Isomorphismus zwischen den endlich-dimensionalen Vektorräumen V und W. Zeige, dass $\dim(V)=\dim(W)$.

Lösung 2. Sei v_1, \ldots, v_n eine Basis von V. Da T ein Isomorphismus ist, ist T insbesondere surjektiv und somit ist $T(v_1), \ldots, T(v_n)$ ein Erzeugendensystem von W, i.e. $\dim(W) \leq \dim(V)$. Ist nun w_1, \ldots, w_n eine Basis von W, so führen wir dasselbe Argument nun mit der Inversen Abbildung T^{-1} durch und erhalten, dass $T^{-1}(w_1), \ldots, T^{-1}(w_n)$ ein Erzeugendensystem von V ist, da T^{-1} surjektiv ist. Wiederum schließen wir $\dim(V) \leq \dim(W)$ und somit $\dim(V) = \dim(W)$.

4 Serie 6 - Nachbesprechung

- 1. Zeige nach wie vor, dass etwas eine Basis ist!
- 2. -

- 3. -
- 4. Was ist für Wohldefiniertheit zu zeigen?

Wir wissen, dass eine Funktion einem Argument nur EINEN Wert zuweist. Dies ist zu überprüfen. Am konkreten Beispiel der Serie 6, Aufgabe 4 heißt das, dass $[v_1] + [v_2] = [v_1 + v_2]$ das gleiche sein muss wie $[v_1 + w_1 + v_2 + w_2] = [v_1 + w_1] + [v_2 + w - 2]$ für $w_1, w_2 \in W$, da die Argumente $([v_1], [v_2]) = ([v_1 + w_1], [v_2 + w_2])$ diegleichen sind. Tatsächlich, ist $[v_1 + v_2] = [v_1 + w_1 + v_2 + w_2]$, da ja $[v_1 + w_1 + v_2 + w_2] = \{v_1 + v_2 + w_1 + w_2 + w \in V \mid w \in W\} = \{v_1 + v_2 + w' \in V \mid w' \in W\} = [v_1 + v_2].$

- 5. -
- 6. -

5 Theorie & Beispiele

Siehe handschriftliche Notizen.

6 Serie 7 - Vorbesprechung

Das große Beispiel aus der Übungsstunde deckt die meisten Ideen der Serie ab. Das Thema sind in erster Linie Basiswechselmatrizen.