Counter-examples for convergence to eigenvectors

Leopold Karl

March 2023

1 Question

If we have an endomorphism on a finite-dimensional vector space V over a field K represented by the matrix A with eigenvectors $v_{1}, v_{2}, \ldots, v_{n}$ (up to scalars), then does the sequence $\left(x_{i}\right)_{i \in \mathbb{N}}=A^{i} w$ converge to an eigenvector $\mu \cdot v_{k}$ for any vector $w \in V$, a scalar $\mu \in K$ and an index $k \in\{1, \ldots, n\}$.

2 Counter-example 1

Let $A=\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ and $w=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ then the sequence $\left(x_{i}\right)_{i \in \mathbb{N}}=A^{i} w$ is given by $x_{j}=\left(\begin{array}{c}j+1 \\ 1 \\ 1\end{array}\right)$ as can be proven by induction ${ }^{1}$. However, the only eigenvalue of A is 1 as the characteristic polynomial is $p_{A}(\lambda)=(\lambda-1)^{3}$ and the Eigenraum to this eigenvalues is $\operatorname{Eig}_{1}(A)=\left\langle\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)\right\rangle$.
In particular, there does not exist any vector $w^{\prime} \in E i g_{1}(A)$ with $\left(x_{i}\right)_{i \in \mathbb{N}} \xrightarrow{i \rightarrow \infty} w^{\prime}$ because for all $w^{\prime}=\left(\begin{array}{l}w_{1}^{\prime} \\ w_{2}^{\prime} \\ w_{3}^{\prime}\end{array}\right) \in \operatorname{Eig}_{1}(A)$ we have that the second component $w_{2}^{\prime}=0$, since $w^{\prime}=\alpha \cdot\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)+\beta\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$ for some $\alpha, \beta \in K$. However, it also holds that for all $i \in \mathbb{N}$ the second component of x_{i} equals 1 so $\left(x_{i}\right)_{i \in \mathbb{N}}$ does not converge to any $w^{\prime} \in \operatorname{Eig}_{1}(A)$, since the second component doesn't.

3 Adapted Question

Does the statement at least hold for endomorphism induced by diagonalisable or even diagonal matrices?

4 Counter-example 2

No, not even this holds, as the following counter example shows:
Let $A=\left(\begin{array}{lll}3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right)$ which is a diagonal matrix and, hence, in particular diagonalisable. The matrix' eigenvalues are $\lambda_{1}=1, \lambda_{2}=2, \lambda_{3}=3$ as $p_{A}(\lambda)=(\lambda-3)(\lambda-2)(\lambda-1)$. It's Eigenräume are given by $\operatorname{Eig}_{1}(A)=\left\langle\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)\right\rangle, \operatorname{Eig}_{2}(A)=\left\langle\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)\left\langle, \operatorname{Eig}_{3}(A)=\left\langle\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)\right\rangle\right.\right.$. Now consider $w=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$.

[^0]Then the sequence $\left(x_{i}\right)_{i \in \mathbb{N}}=\left(A^{i} w\right)_{i \in \mathbb{N}}$ has the elements $x_{i}=\left(\begin{array}{c}3^{i} \\ 2^{i} \\ 1\end{array}\right)$ as can be shown by induction. However, $\left.x_{i}\right)_{i \in \mathbb{N}}$ clearly does not converge to any vector in $\operatorname{Eig}_{2}(A)$ or $\operatorname{Eig}_{3}(A)$ for similar reasons as in counter-example 1 for the third component. Also, $\left.x_{i}\right)_{i \in \mathbb{N}}$ does not converge to any vector in E Eig (A) because the first component of x_{i} tends to ∞ as $i \rightarrow \infty$, while the first component of any vector in $E i g_{1}(A)$ equals 0 .

5 Appendix: Induction

We prove that $\left(x_{i}\right)_{i \in \mathbb{N}}=A^{i} w$ is given by $x_{j}=\left(\begin{array}{c}j+1 \\ 1 \\ 1\end{array}\right)$.

Proof.
IV (Induktionsvoraussetzung):
For $j=0$ we have $x_{0}=w=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)=\left(\begin{array}{c}0+1 \\ 1 \\ 1\end{array}\right)=\left(\begin{array}{c}j+1 \\ 1 \\ 1\end{array}\right)$.
IA (Induktionsannahme):
$\forall k \in \mathbb{N}: k \leq j: x_{k}=\left(\begin{array}{c}k+1 \\ 1 \\ 1\end{array}\right)$.
IS (Induktionsschritt):
For x_{j} we have $x_{j}=A^{j} w=A\left(A^{j-1} w\right)=A x_{j-1} \stackrel{I A}{=} A\left(\begin{array}{c}j-1+1 \\ 1 \\ 1\end{array}\right)=\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{l}j \\ 1 \\ 1\end{array}\right)=$
$\left(\begin{array}{c}j+1 \\ 1 \\ 1\end{array}\right)$ as we wanted to show.

[^0]: ${ }^{1}$ see Appendix

