Lineare Algebra - Übungsnotizen 2

Leopold Karl

3. Oktober 2022

1 Überblick: Stoff der letzten Wochen

• Funktionen:

Sei $f: X \to Y$ eine Funktion, $A \subseteq X, B \subseteq Y$.

- Injektivität: $\forall x, x' \in X : f(x) = f(x') \Longrightarrow x = x'$
- Surjektivität: $\forall y \in Y \ \exists x \in X : f(x) = y$
- $\operatorname{graph}(f) := \{(x, y) \in X \times Y \mid f(x) = y\} \subseteq X \times Y$
- Bild von A unter $f: f(A) := \{y \in Y \mid \exists x \in A : f(x) = y\}$
- Urbild von B unter $f: f^{-1}(B) := \{x \in X \mid f(x) \in B\}$
- Hilbert Hotel: mit Funktionen die Größe von Mengen vergleichen¹.

• Naive Mengenlehre:

Seien $P, Q \subseteq X$ Mengen.

- Durchschnitt: $P \cap Q := \{x \in X \mid x \in P \land x \in Q\}$
- Vereinigung: $P \cup Q := \{x \in X \mid x \in P \lor x \in Q\}$
- Komplement: $P^c := X \setminus P := \{x \in X \mid x \notin P\}$
- De Morgan: $(P \cap Q)^c = P^c \cup Q^c$ bzw.² $(P \cup Q)^c = P^c \cap Q^c$
- Kartesisches Produkt: $P \times Q := \{(x, y) \mid x \in P \land y \in Q\}$
- -Russell-Paradoxon führt zu Verlangen nach axiomatischer Mengenlehre (Bsp.: ${\rm ZF})^3$

• Logische Begriffe:

Logischer Ausdruck	$\operatorname{Bedeutung}$	Negation
$\neg A$	A gilt nicht.	A
$A \wedge B$	A und B gelten.	$\neg A \lor \neg B$
$A \lor B$	A oder B (einschließend) gilt.	$\neg A \wedge \neg B$
$A \Rightarrow B \ (:= \neg A \lor B)$	A impliziert B.	$A \wedge \neg B$
$A \iff B$	A und B sind äquivalent.	$(A \land \neg B) \lor (\neg A \land B)$
$\forall x \in X : A(x)$	Für alle x in X gilt $A(x)$.	$\exists x \in X : \neg A(x)$
$\exists x \in X : A(x)$	Es existiert ein x in X mit $A(x)$.	$\forall x \in X : \neg A(x)$
$\exists ! x \in X : A(x)$	Es existiert genau ein x in X mit $A(x)$.	$\forall x \in X : \neg A(x) \lor \exists x, y \in X :$
		$x \neq y \land A(x) \land A(y)$
$\forall x \in X \ \exists y \in Y : A(x,y)$	"Individuelle/punktweise Existenz"	$\exists x \in X \ \forall y \in Y : \neg A(x, y)$
$\exists y \in Y \ \forall x \in X : A(x,y)$	"Universelle/gleichmäßige Existenz"	$\forall y \in Y \ \exists x \in X : \neg A(x, y)$

• Fibonacci-Folgen

¹Empfehlung: Kurzfilm zum Hilbert Hotel

²beziehungsweise

³Beispiel: Zermelo-Fraenkel-Mengenlehre

2 Serie 1

1. Präsentation: Lukas-Magnus Retter

Hinweise: In Aufgabe b) ist es von Vorteil zu verwenden, dass man $\mathcal{F}_{0,1}$ und $\mathcal{F}_{1,0}$ schon "gut" kennt.

2. Präsentation: Lars Bänziger

Hinweise: Bilder sind keine Beweise. Videotipp: "How to lie using visual proofs" by "3Blue1Brown".

3. Präsentation: Carlo Crespi & Kevin Santrau

Hinweise: Beachte, dass man sich im Allgemeinen nicht aussuchen kann, den Limes zuerst nur auf den einen Teil einer Formel anzuwenden und erst später auf den anderen.

Bsp:

$$1 = \lim_{n \to \infty} \frac{1/n}{1/n} \neq \lim_{n \to \infty} \frac{0}{1/n} = 0$$

.

4. Präsentation: Aleksandar Tuzlak & Samuel Noger

Hinweise: \land, \lor werden bei Negation "umgedreht"; das Negationszeichen kann nicht in die Relationen hineingezogen werden $(\neg R(x,y) \Rightarrow R(\neg x, \neg y), \text{ da } x \text{ und } y \text{ Variablen sind und Variablen nicht negiert werden können.}$

5. Präsentation: Karim Addi & Lino Bielle

Hinweise: Bei der Negation werden die Quantoren "vertauscht", sowie die Aussage negiert. Der Bereich der Variablen bleibt jedoch gleich: $\neg(\exists \epsilon > 0 : A(\epsilon)) \Leftrightarrow \forall \epsilon > 0 : A(\epsilon) \Leftrightarrow \forall \epsilon \leq 0 : A(\epsilon)$

6. Katharina Knist & Luca Darms

Hinweise: Decke stets auch die trivialen Fälle ab und unterscheide strikt zwischen aufgestellten Behauptungen und (zugehörigen) Beweisen, um nicht unabsichtlich nur Behauptungen aufzustellen.

3 Beispiele

1. Urbild: Sei $f: X \to Y$, $x \mapsto \sin(x)$. Dann ist das Urbild $f^{-1}(\{0\}) = \{x \in X \mid \exists n \in \mathbb{N} : x = \pi n\}$

2. Anwendung der Partition: Definition einer Funktion durch Fallunterscheidung. Bsp:

$$f: \mathbb{N} \to \mathbb{N}, \ x \mapsto \begin{cases} 1 & | x \in \mathbb{N}_u \coloneqq \{x \in \mathbb{N} \mid x \text{ gerade}\} \\ 0 & | x \in \mathbb{N}_g \coloneqq \{x \in \mathbb{N} \mid x \text{ ungerade}\} \end{cases}$$

3. Eigenschaften von Funktionen: Sei $f: X = \mathbb{R} \to Y = \mathbb{R}, \ x \mapsto \cos(x)$. Wie muss ich die Definitionsmenge X und die Wertemenge Y einschränken, um Injektivität, Surjektivität oder Bijektivität von f zu erreichen?