Lineare Algebra - Übungsnotizen 1

Leopold Karl

26. September 2022

1 Allgemeines

- Mail: lekarl@student.ethz.ch
- Tel.: +41 78 2043029
- Persönliche Homepage mit Übungsmaterialien/-notizen: www.leopoldkarl.com
- Buchempfehlungen: Fischer, Jänich, Zusammenfassung von Pink, Einführung in das mathematische Arbeiten (Schichl/Steinbauer)

2 Organisatorisches

- SAMUp (Ausarbeitungen hochladen) / Box in HG J68
- Vorxn (Präsentationen)
- Quizzes
- Study Center
- Notenbonus: max. 5P¹ durch Quizzes pro Semester, max. 5P durch Präsentationen pro Semester

3 Symmetrien von Fib

- Erinnerung: In der Vorlesung wurden φ und ψ gefunden, durch die $\mathcal{F}_{0,1}$ und $\mathcal{F}_{1,0}$ und dadurch alle Folgen $\mathcal{F}_{a,b} \in \mathbf{Fib}$ dargestellt werden können.
- Idee: Eine Symmetrie von **Fib** soll die Struktur von **Fib** erhalten, also z.B.² Distanz, Winkel etc.³
- Def.⁴ Symmetrie: Eine Symmetrie von **Fib** ist eine Abbildung $T : \mathbf{Fib} \to \mathbf{Fib}$, die für $\mathcal{A}, \mathcal{B} \in \mathbf{Fib}$ und $\alpha \in \mathbb{R}$ dem Folgenden genügt:
 - i) T(A + B) = T(A) + T(B)
 - ii) $T(\alpha A) = \alpha T(A)$

Note: Später im Semester werden wir Abbildungen mit den obigen Eigenschaften auch als "Lineare Abbildungen" bezeichnen

- Beispiele: Identitätsabbildung $(A \mapsto A)$, Skalarmultiplikation $(A \mapsto \alpha A)$, Verschiebungsabbildung $(A = (a_0, a_1, a_2, ...) \mapsto (a_1, a_2, ...))$
- Gegenbeispiel: Folgenadditions-Abbildung $(A \mapsto A + B)$

¹Punkte

 $^{^2}$ zum Beispiel

 $^{^{3}}$ et cetera = lat. und so weiter

 $^{^4{}m Definition}$

4 Fixpunkte & Eigenfolgen Fib

- Def. Fixpunkt: A ist ein Fixpunkt der Symmetrie T genau dann, wenn T(A) = A gilt.
- Def. Eigenfolge: \mathcal{A} ist eine Eigenfolge der Symmetrie T genau dann, wenn $T(\mathcal{A}) = \alpha \mathcal{A}$ Note: Später im Semester werden wir Argumente einer Symmetrie, die die Eigenschaft der Eigenfolge erfüllen allgemeiner als "Eigenvektor" bezeichnen.
- Eigenfolge der Verschiebungsabbildung $S : \mathbf{Fib} \to \mathbf{Fib}, \mathcal{A} = (a_0, a_1, a_2, ...) \mapsto (a_1, a_2, ...)$: Jede Eigenfolge von S muss die Form $\mathcal{A} = (a_0, \alpha a_0, \alpha^2 a_0, \alpha^3 a_0, ...)$ haben (siehe Skript)
- 1. Daraus folgt für $a_0 = 1$ die explizite Formel der n-ten Fibonaccizahl:

$$F_n = \frac{\varphi^n - \psi^n}{\sqrt{5}}$$
 für $\varphi = \frac{1 + \sqrt{5}}{2}, \psi = \frac{1 - \sqrt{5}}{2}$

5 Tipps zur Serie

- 1. a) Verschiebungsabbildung S b) Was mussen wir wissen, um \mathcal{F} zu berechnen (siehe Skript/Vorlesung)?
- 2. a) benutze Wahrheitstabellen b) Anschauung: zeichne dir die Mengen auf; Beweisschema: "Sei $x \in A$, dann …, also ist $x \in B$."
- 3. Verwende die rekursive Def. von $\mathcal{F}_{0,1}$
- 4. Negationszeichen "immer weiter hineinziehen"
- 5. Das schafft ihr! Schlagt im Zweifelsfall nochmal nach, wie die Kontraposition definiert ist!
- 6. Wie viele Zahlen einer Fibonacci-Folge müssen wir kennen, um sie eindeutig bestimmen zu können?